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© (Part 1) Motivation
@ The Yin and Yang of Deep Learning: Training vs Inference

© Background

@ Understanding inference performance
@ Model complexity
@ FLOPs
@ Speed

@ Optimization techniques
@ Weight quantization
@ Model pruning
© (Part 2) Hands-on tutorial
@ Prerequisites (To be announced ~05/31 via Discord)
@ Quantization
@ Model pruning
@ Benchmarking
o (Optional) Deployment with OpenVINO

@ References
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Overview
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Figure 1: High-level deep learning workflow showing training, then followed by

inference. [8]
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Training vs Inference
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Figure 2: Training uses multiple inputs in large batches to train a deep neural
network, while inference extracts information from new inputs in smaller batches
using the trained network. [2]
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Why do we need inference optimization?
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Figure 3: Inference optimization for deployment. [1]

o Improved performance: optimized models can deliver faster and
more responsive predictions

o Efficient resource utilization: leads to cost savings, as less powerful
hardware, or multiple models simultaneously

e Deployment flexibility: expands reach and applicability (mobile,
edge, embedded systems, etc.)
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Existing challenges...
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Figure 4: Timeline of
top NN models with the
number of parameters
(from ImageNet). [3]

Accuracy-efficiency trade-off
Model complexity and size
Hardware and platform variability
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Figure 5: Hardware
platforms comparison [3]
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To sum up

INFERENCES,

@ Focuses on latency,
memory usage, power
consumption as it
directly impacts the
real-time performance.

@ To optimize the model's
performance, accuracy,
and generalization on
the training data.
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Number of parameters
A sample linear model in Tensorflow:

model = keras.Sequential([
keras.layers.Dense(5, activation='relu', input_shape=(3,)),
keras.layers.Dense(8, activation='relu', trainable=False),
keras.layers.Dense(10, activation='relu', trainable=False),
keras.layers.Dense(15, activation='relu'),
keras.layers.Dense(4, activation='softmax'),

1

Checking model summary in Tensorflow:

Layer (type) Output Shape Param #
dense (Dense) (None, 5) 20
dense_1 (Dense) (None, 8) 48
dense_2 (Dense) (None, 10) 90
dense_3 (Dense) (None, 15) 165
dense_4 (Dense) (None, 4) 64

Total params: 387
Trainable params: 249
Non-trainable params: 138
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FLOPs

A computational cost of a model:

@ A widely used metric as the proxy, FLOPs, measures the number of
floating-point arithmetic operations performed in a deep learning
model. It includes operations such as additions, subtractions,
multiplications, and divisions involving floating-point numbers.

@ Alternative to FLOPs, MACs, short for the number of

multiply-accumulate operations [6], count both multiplication and
addition as a single unit of operation.

You can check these repos to count FLOPs of your (tf/pt) model:
https://github.com/Mr-Talhallyas/Tensorflow-Keras-Model-Profiler
https://github.com/sovrasov/flops-counter.pytorch

In convolutional neural networks (CNNs), which heavily rely on convolution
operations, MACs are often used as a metric to estimate the computational workload.
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FLOPs

A sample pretrained CNN model in Tensorflow:

form tensorflow.keras.applications import VGG16
model = VGG16(include_top=True, weights="imagenet", input_tensor=None,

input_shape=None, pooling=None, classes=1000,
classifier_activation="softmax")

Using library to print number of FLOPs:

from model_profiler import model_profiler

Batch_size = 128
profile = model_profiler(model, Batch_size)

print(profile)

Output printed in terminal:

Model Profile Value Unit

Selected GPUs
No. of FLOPs

| |
| |
(000, 0907 | 6PU IDs |
0.30932349055999997 | BFLOPs |
| |
| |
| |

GPU Memory Requirement 7.4066760912537575 GB
Model Parameters 138.357544 Million
Memory Required by Model Weights | 527.7921447753906 MB
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FLOPs

An example from FLOPS evaluations in papers:
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Figure 7: Comparison of standard Transformers, Universal Transformers and
Switch Transformers in terms of the number of parameters, FLOPs, and
throughput[4]

The relationship between the number of parameters and FLOPs in deep learning
models is not necessarily linear. The relationship can vary depending on several factors,
including the model architecture, layer types, and specific operations used. For example,
convolutional layers tend to involve more FLOPs due to the convolution operations,
while fully connected layers may have a higher number of parameters but lower FLOPs.
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Speed

Performance means how fast the model processes the live data. Its two
key metrics, latency and throughput are fundamentally interconnected:

Latency Troughput
aitie  @iiie
> >
ms FPS
inferred number of images
FPS = &

processing time in seconds

Figure 8: Understanding latency and throughput. [5]

e Latency measures the required time to process a single input (ms)

@ Throughput measures overall number of inferences per second (or
frames per second, FPS for visual processing)
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Speed

If we were to be given two models, performing equally well on a given
task, which one should we choose?

Accuracy (%)
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@  Non Pareto-Optimal Model
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Figure 9: Pareto Optimality: Green dots represent pareto-optimal models
(together forming the pareto-frontier), where none of the other models (red dots)
get better accuracy with the same inference latency, or the other way around. [7]
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Weight quantization

Floating Point Value

Figure 10: Quantizing floating-point continuous values to discrete values. [7]

Quantization and dequantization steps
X
quantize(X) = Xq = round (E) +z (1)
dequantize(X) = X = S(Xq — 2) (2)

where S scale value, Z zero-point value; more details at [7]
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Model pruning

Model pruning reduces the size of a neural network by removing

unnecessary connections or weights, improving computational efficiency
without compromising performance.
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Figure 11: A simplified illustration of pruning weights (connections) and neurons
(nodes) in a neural network comprising of fully connected layers [7]

DO
T~ N7
AV 0/
7 4
\
\"g

o/
, \Y
O

/
A\

Machine Learning Afternoons CodeSeoul

May 20, 2023 15/19



Model pruning

Unstructured Pruning Structured Pruning
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Figure 12: Understanding unstructured and structured pruning [9]

Model Architecture  Sparsity Type Sparsity % FLOPs Top-1 Accuracy % Source
Dense (Baseline) 0% 1x 72.0% Sandler et al. [133]
Unstructured 75% 027x  67.7% Zhu et al. [167]
. Unstructured 75% 0.52x  71.9% Evci et al. [54]
MobileNet v2 - 1.0 Structured (block-wise) 85% 0.11x  69.7% Elsen et al.
Unstructured 90% 0.12x 61.8% Zhu et al. [167]
Unstructured 90% 0.12x  69.7% Evci et al. [54]

Figure 13: A sample of various sparsity results on the MobileNet v2 architecture
with depth multiplier = 1.0. [7]

Machine Learning Afternoons CodeSeoul May 20, 2023 16 /19



References |

[1]

2]

8]

[4]

[5]

Michael Andersch. Dev Stack: How to Optimize Your Model for Inference?
URL: https://www.devstack.co.kr/inference-optimization-using-
tensorrt/.

Michael Andersch. Inference: The Next Step in GPU-Accelerated Deep
Learning. URL: https://developer.nvidia.com/blog/inference-
next-step-gpu-accelerated-deep-learning/.

Maurizio Capra et al. “Hardware and software optimizations for accelerating
deep neural networks: Survey of current trends, challenges, and the road
ahead”. In: IEEE Access 8 (2020), pp. 225134-225180.

William Fedus, Barret Zoph, and Noam Shazeer. "Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity™. In:
The Journal of Machine Learning Research 23.1 (2022), pp. 5232-5270.

Introduction to Performance Optimization - OpenVINO Documentation.
URL: https://docs.openvino.ai/2022.1/openvino_docs_
optimization_guide_dldt_optimization_guide.html.

Machine Learning Afternoons CodeSeoul May 20, 2023 17/19


https://www.devstack.co.kr/inference-optimization-using-tensorrt/
https://www.devstack.co.kr/inference-optimization-using-tensorrt/
https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/
https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/
https://docs.openvino.ai/2022.1/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvino.ai/2022.1/openvino_docs_optimization_guide_dldt_optimization_guide.html

References |l

[6] Jeff Johnson. “Rethinking floating point for deep learning”. In: arXiv
preprint arXiv:1811.01721 (2018).

[7] Gaurav Menghani. “Efficient deep learning: A survey on making deep
learning models smaller, faster, and better”. In: ACM Computing Surveys
55.12 (2023), pp. 1-37.

[8] Brad Nemire. NVIDIA Deep Learning Inference Platform Performance
Study. URL: https://developer.nvidia.com/blog/nvidia-deep-
learning-inference-platform-performance-study/.

[9] neuralmagic. Part 1: What is Pruning in Machine Learning? URL:
https://neuralmagic.com/blog/pruning-overview/.

Machine Learning Afternoons CodeSeoul May 20, 2023 18/19


https://developer.nvidia.com/blog/nvidia-deep-learning-inference-platform-performance-study/
https://developer.nvidia.com/blog/nvidia-deep-learning-inference-platform-performance-study/
https://neuralmagic.com/blog/pruning-overview/

Thank you for your attention!
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@ Lecture contents:
> Slides: https://github.com/CodeSeoul /machine-learning/
230520-inference-pl/lecture.pdf
e Connect with us:
» Discord: https://discord.gg/HFknCs8
» GitHub: https://github.com/CodeSeoul/machine-learning

» Donations: We are a registered non-profit and run on donations from
people like you! NongHyeop/-5 3 23 | 301 0275 2831 81 (2 =4 F)
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