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Dear committee, good day, this is a post-recorded PhD defense presentation of
mine. It is done with the purpose to inform the committee members who could not
participate, as well as our lab members.

Dear all, | am Sanzhar Askaruly, a PhD candidate in Biomedical Engineering at
UNIST. The topic of my Ph.D thesis is called Development of Deep Learning-
integrated Futuristic Biomedical Platforms for Translational Digital Healthcare. My
research has been done under supervision by Professor Woonggyu Jung.
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[1] "What Is Digital Health?",

To begin with, | would like to introduce what is digital health. The broad scope of
digital health includes categories such as wearable devices, mobile health, health
IT, telehealth and personalized medicine. These digital tools give a more holistic
view of human health through access to data and control.
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[1] "What Is Digital Health?",

It offers real opportunities to improve medical outcomes and enhance efficiency.
Providers and users of this tech have several benefits, including cost reduction,
quality improvement, personalization and others.




Chapter 1. Introduction

1.2. Deep learning
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[1] Shortliffe (2018), "Clinical decision support in the era of artificial intelligence.” [3] Clinical Decision Support. Agency for Healthcare Research and Quality
[2] Densen. (2011) "Challenges and opportunities facing medical education.”

However, the extensive use of technologies within digital health creates a
bottleneck of analysing large and complex amounts of medical data, where human
is incapable.
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[1) Shortliffe (2018), "Clinical decision support in the era of artificial intelligence.” [3] Clinical Decision Support. Agency for Healthcare Research and Quality

[2] Densen. (2011) "Challenges and opportunities facing medical education.”
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At the same time, the capacity of artificial intelligence keeps expanding.
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[1] Shortliffe (2018), "Clinical decision support in the era of artificial intelligence.” 3] Clinical Decision Support. Agency for Healthcare Research and Quality
[2] Densen. (2011) "Challenges and opportunities facing medical education.”

One of the opportunities for this challenge could be the suggestion of assistive
intelligent devices. Their goal is to support the decision by giving a timely advice at
the point of care.
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For this reason, they may need to utilize medical knowledge and patient data.
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[2] Densen. (2011) "Challenges and opportunities facing medical education.”

Deep learning is a computational technique, which is subset of a broader term of
artificial intelligence. It was repeatedly reported to achieve success for various
biomedical problems.
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Conventional biomedical devices

Currently, conventional biomedical devices are developed with fixed requirements.
They are often primitive, static, and are even analogue sometimes in their nature.
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Smart biomedical devices

Conventional biomedical devices
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In contrast, smart biomedical devices possess built-in intelligence to support
human decision. They exist, but rare, partly because they require multiple
considerations. Also, their objective is not always obvious.

10
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The transformation from one category to another is an open question. However,
the exploration of opportunities within was my primary interest during the PhD

program.
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1.4. Outline

Deep learning New biomedical device Imaging Translation

Optical coherence tomography Human skin tissue Cosmetical
Faster Imaging

OCT volume inpainting

*OCT: Optical coherence tomography 4 ) ) >
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In this slide, | present with the outline of research works. Initially, | will describe
how deep learning could be integrated to accelerate OCT imaging of human skin for
cosmetical fields.

12
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1.4. Outline

Deep learning New biomedical device Imaging Translation

Optical coherence tomography Human skin tissue Cosmetical

Faster {maging = = ' ’ ’ ’
OCT volume inpainting S ’*' iﬁr Q "Q

Xenopus laevis model organism Pharmaceutical
Automated Analysis I =L Bit

Embryo segmentation A
1

*OCT: Optical coherence tomography, *PDMS: Polydimethylsiloxane

Next, | demonstrate the results of leveraging deep learning for automated analysis
of an aquatic animal model, Xenopus, having implications for pharmaceutical
research.
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Finally, in chapter 4, | will present the outcome of incorporating Al model to
enhance ear examination procedure to support clinical diagnosis.
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Chapter 2
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Joint work with: UIsan National Institute of Science and Technology, South Korea
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Let me introduce the first project OCT volume inpainting using deep learning with
application to human skin. This is a joint work with Professor Jang’s laboratory
from Kyungpook National University and several researchers.

15



Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.1. Motivation

Evaluation of skin aging

Wrinkles as aging signal

Cuticle
Epidermis
Dermis

Hypodermis
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Wrinkle formation serves a representative signal of ageing in human skin.

16
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2.1. Motivation

Evaluation of skin aging
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The anti-aging market is expanding, and the companies are driven to develop not
only high-quality products, but also utilize high standard product assessment
instruments. In particular, the in vivo and quantitative observation of skin is
required for an accurate evaluation of the effectiveness of the product.

17
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2.1. Motivation

Evaluation of skin aging
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One of the most commonly used imaging systems for skin measurement, PRIMOS,
was proposed as an objective tool in the cosmetics industry for studying skin
topography and the volume of wrinkles. PRIMOS is a non-invasive, fast and direct
measurement of the skin surface with high precision.

18
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2.1. Motivation

Evaluation of skin aging

Wrinkles as aging signal

[ A. Fringe projection (PRIMOS) ] [ B. Optical coherence tomography (OCT) ]
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Another potential, but not so popular tool is OCT, which is a non-invasive,
volumetric, real-time imaging modality providing a powerful tissue inspection.
Detailed structural information is provided by OCT with high-resolution capability.

19
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2.1. Motivation

The potential of OCT-Al for skin study
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[1] Askaruly, et al (2018), "Quantitative evaluation of skin surface roughness using OCT in vivo." IEE~ Q€

From our previously reported comparison study, it was identified PRIMOS has
difficulty in providing accurate and reliable skin analysis because its results can vary
according to orientation, motion artifacts, as well as back scattering of the subject.
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2.1. Motivation

The potential of OCT-Al for skin study

Higher resolution

Robust to motion artifact

PRIMOS Depth Profile (en-face)

' 14 s, [PRIMOS) 5, (PRIMOS) [ (Pramos) |

12 gl
. il
L 1.0+ H al |
X

08

—
ng pi 1 Nomn

(PRI

20,0 #20.-20 0420220, 0320 OCT Depth Profile (en-face)

1
14 [s.tocn) [setocn Suael0CT) | | f
12 (4
10/] f ? Al
08 :
20 0 +20 20 0 +20 20 0 +20 . ermaine depth -~

Surface topology of skin phantom
achieved by PRIMOS and OCT'

[1] Askaruly, et al (2018), "Q of skin surface using OCT invivo." IEE~ Q€
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Moreover, in order to observe the compact and periodic structure of wrinkle,
imaging device requires high resolution. Topologic image from OCT has well
defined periodic structures and clear distinction of patterns compared to PRIMOS.

21
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2.1. Motivation

The potential of OCT-Al for skin study
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OCT inherently maintains essential advantages of in vivo skin imaging. However,
OCT setups are often available in limited research environments. One obstacle is
lengthy scanning procedure of the subject.

22
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reduce the time of imaging.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

The potential of OCT-Al for skin study

Higher resolution
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Essentially, we can overcome this issue with the help of deep learning technique to
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2.2. Research approach

Sparse scanning

In the principle of the suggested technique, we start by low-sample scanning to
reduce time, in this case half.
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2.2. Research approach

Sparse scanning

S
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the inform, ation
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Further we somehow should restore the slices in between.

25
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2.2. Research approach

Sparse scanning

Restore ¢, =
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To do this, one straightforward way could be interpolation of so-called patches
between two successive slices at each height and width. Basically, we can save half-
time of full volume scanning at the cost of post-processing.
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2.2. Research approach

Sparse scanning
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The common terminology for the information restoration represented here is called
inpainting, and we will further refer to it this way.

27
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2.2. Research approach

Sparse scanning
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Similarly, we can go further and scan only every fourth slice to save even more.
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2.2. Research approach

Sparse scanning
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Reducing time 4x times:
20.57 to 5.15 sec

In this case, the average scan time of typical 1cm2 FOV would reduce from 20
seconds to 5 seconds.
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2.2. Research approach

Volume inpainting using GAN
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As we can expect, the described interpolation method could have adverse effect
onto the accurate representation of structure, causing interrupted details,
discontinuous surfaces, and other phenomena, reducing research and diagnostic
significance. In this study, we present another, more precise approach based on
deep learning technique.
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2.2. Research approach

[ Summary of skin dataset details ]

HE7 (2018), THAM X FEYYT|YS 0B TR YUY |2

I Participant
Sample OCT volumes Number of subjects 10
Young (205) Old (SOS) Patients’ age (years) 353+85

Gender (% of femalc) 40
S, 2.23+0.57
S, 2.84+0.71
St 14.36£2.66

31

The collection of data was approved by the IRB protocol. A total of 10 people
participated, average of 35 years and skin measurement using OCT conducted.
Images on the bottom left visualize sample volumes of human skin.
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2.2. Research approach

Overview of the OCT volume inpainting method!!

Discriminator
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Adversarial loss
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) ) — ® Pre-Arained ) roid2 |_wnt I ot | wor | sis | o | mir | sid | ww | woio |
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Extracted patch | @ '@ ® | Goneratod patch
Sparscly-sampled data (6 3) | ] (64x128x3)

(960X 512/Nx79%) (6
(N=2,4.8) (64x16x3)

v’ The suggested network architecture was trained on the cropped patches from original and synthetically
sparse data at several ratios *Result is presented with permission fror hpe

Briefly speaking, we tried to restore the original dimension of the cropped patches
of the intentionally dropped slices along C-mode scan axis. This patch is further
utilized as input to the deep neural network. As for the model, we utilize generative
adversarial network architecture. During training, we carried out 10-fold cross-
validation to evaluate the performance. In each fold, a model is trained using 9-
subjects data, and then tested using the other subject data not used for training.
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2.2. Research approach

Model architecture

B Generator Residual blacks (x5) Upsample blocks {xlog, /)
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v' We leverage super-resolution generative adversarial network as a technique for OCT scan inpainting

For deep neural network, we utilize SRGAN-like architecture. Its original purpose is
the estimation of high-resolution images from its low-resolution images. Likewise,
we can utilize the SRGAN for inpainting. Using the technique, we can obtain fully
sampled OCT volume from sparsely sampled OCT scans.
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2.2. Research approach

. .
Flattening algorithm
T Siitface Final result
i Flattening [ d. MMl (Roughness
Image Curvature estimation etection extraction)
[ Input ]

[ o )

Input image Curvature estimation

prp——

Gaussian filter —» Median filter — Differential filter - Extract curvature

Flattening Surface detection

Final result

S — —

Gaussian filter = Differential filter = Extract surface

One of the useful algorithms to know before the evaluation of surface is flattening.
Its goal is to minimize the natural curvature of skin in order to perform correct
measurements. Home-built combination of image processing steps produces the
output as shown on the far right.
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2.2. Research approach

Evaluation metrics

[ A. Surface roughness ] [ B. Image quality ]
A ge surface rough The mean squared error:
1 nx ny 1 N
= —_— s -2 2
Sa nxxny;;lz(x“y/)l MSE(x,) N;m ¥
Root mean square roughness: Peak signal-to-noise ratio:
[1 S (MAX))?
= f— PSNR = 201
S ,mny;;"‘“’f’ o810 IMSE

N
Multiscale structure similarity!*):

Maximal roughness:

M
Smax = Max(z) — min(z) S5IMps = [l (x, )] - l_[[r/(x, y)]ﬂ’[s,(x,y)lh
j=1

[1) Wang, et al (2003) “Multiscale structural similarity for image quality assessment” ACSSC

unisT

We evaluated performance based on surface roughness and image quality.
Roughness characterizes irregularities on surfaces, providing information on the
geometry of structure. Additionally, image quality was assessed using using MSE,
multi-scale structural similarity index, and peak signal-to-noise ratio.

35
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2.3. Validation

SR-GAN

Commercial software [ Bicubic interpolation

v' In case of interpolation, loss occurs in the process of data restoration.

v’ Investigation of wrinkle pattern of the surface suggests that the 3D inpainting using GAN shows more favorable results.

unisr 36

One of the common applications of OCT imaging in skin is the observation of skin
topography. It is useful for estimation of wrinkle width, wrinkle depth and overall
geometric orientations.

Here, we compared bicubic interpolation, commercial software and the suggested
method at various sampling rates. Although better at half sampling rate, during
interpolation, loss occurs in the process of data restoration for higher sampling. As
a result of qualitative investigation of wrinkle pattern of the surface, we confirm
that the 3D inpainting using GAN shows more favorable results.

36
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2.3. Validation

Surface evaluation

A [ X7. dimension

Ground truth

(1/%)

SR-GAN

37
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We investigated inpainting quality in cross-sectional dimensions. We can observe
that interpolation could amplify artifact in the dimension, where it has less
information. Although pixel information is blurred, the surface information is still
restored with GAN.
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2.3. Validation
.
Surface evaluation L
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v’ As a result of inpainting using deep learning, it was confirmed the surface information of the ground truth was restored quite similarly
v In the case of inpainting using interpolation, irregular artifacts occur on the surface as the number of sampling decreases

If we plot the depth profile along the axis, we can observe that bicubic
interpolation tends to have more deviation from the ground truth compared to the
deep learning method.
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2.3. Validation

Survey
Mean opinion score (MOS) test by 14 subjects
Sampling SR-GAN Bicubic interpolation
1/2 4.25 3.96
1/4 3.68 3.50
1/8 3.18 2.36

Preference test by 14 subjects

Sampling SR-GAN Bicubic interpolation
12 8 (57.1%) 6 (42.9%)
1/4 12 (85.7%) 2 (14.3%)
1/8 13 (92.9%) 1 (7.1%)

We evaluated the inpainting methods in terms of human opinion. To conduct
survey, we provided the respondents the resultant images from interpolation and
the deep learning approach. Table above reports mean opinion scores and table
below describes the results of preference test. In both surveys, the deep learning-
based method suggests prevalence over interpolation.
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2.3. Validation

Image quality

Comparison of OCT volume inpainting quality
using deep learning method and bicubic interpolation ELIAE AT
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v" We have produced our evaluation of two
methods (deep learning / bicubic

- interpolation) inpainting quality with
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We investigated inpainting quality in cross-sectional dimension. In accordance with
definitions, we compared MSE, PSNR and MS-SSIM parameters for bicubic
interpolation and generative adversarial network.
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2.3. Validation

Image quality

Comparison of OCT volume inpainting quality
using deep learning method and bicubic interpolation

)
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v" We have produced our evaluation of two
methods (deep learning / bicubic
interpolation) inpainting quality with
regards to the MSE, PSNR, and MS-SSIM
parameters in YZ dimension

v MSE error of interpolation grows more
sharply with more sparse sampling from
1/2 to 1/8 suggesting it is more prone to
inaccurate representation of ground truth

Here, MSE error of interpolation grows more sharply compared to the GAN with
more sparse sampling from half to one-eighth suggesting it is more prone to

inaccurate representation of ground truth

41
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Image quality

Comparison of OCT volume inpainting quality

using deep learning method and bicubic interpolation
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[ Our findings

We have produced our evaluation of two
methods (deep learning / bicubic
interpolation) inpainting quality with
regards to the MSE, PSNR, and MS-SSIM
parameters in YZ dimension

MSE error of interpolation grows more
sharply with more sparse sampling from
1/2 to 1/8 suggesting it is more prone to
inaccurate representation of ground truth

Analogous conclusion could be drawn from
PSNR metrics, performed on the
logarithmic scale and in inverse nature

Analogous conclusion could be drawn from PSNR metrics, performed on the

logarithmic scale and in inverse nature
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

Image quality

Comparison of OCT volume inpainting quality
using deep learning method and bicubic interpolation
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[ Our findings

We have produced our evaluation of two
methods (deep learning / bicubic
interpolation) inpainting quality with
regards to the MSE, PSNR, and MS-SSIM
parameters in YZ dimension

MSE error of interpolation grows more
sharply with more sparse sampling from
1/2 to 1/8 suggesting it is more prone to
inaccurate representation of ground truth

Analogous conclusion could be drawn from
PSNR metrics, performed on the
logarithmic scale and in inverse nature

XY dimension repeats the tendency of YZ

As for the top-view XY dimension, MSE and PSNR have analogous tendency and
similar deviation ranges. SSIM measurements drop less abruptly for GAN.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.3. Validation

Skin roughness

Comparison of skin roughness deviation from ground truth after O findings
OCT volume inpainting using deep learning hod and bicubic interpolati 8
" @ o
s, -

- n g - L. - v In case of data reconstructed by interpolation, with
"; - ; increase of sparse ratio, a large error occurs

: " ; = ta compared to the roughness values of ground truth.
H &
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Another valuable perspective to inspect inpainting quality is the examination of
roughness data with the increase of sampling ratio. In particular, here we present
error rates for the measured roughness parameters. A large error occurs compared
to the roughness values for interpolation cases.
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2.3. Validation

Skin roughness

Comparison of skin roughness deviation from ground truth after
OCT volume inpainting using deep learning hod and bicubic interpolati
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v In case of data reconstructed by interpolation, with
increase of sparse ratio, a large error occurs
compared to the roughness values of ground truth.

v" In case of data reconstructed by GAN, it was
confirmed that the error rate was significantly
suppressed despite the increase of the sparse ratio

45

On contrast, in case of data reconstructed by GAN, it was confirmed that the error
rate was significantly suppressed despite the increase of the sparse ratio.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.3. Validation

Skin roughness

Comparison of skin roughness deviation from ground truth after
OCT volume inpainting using deep learning hod and bicubic interpolati
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From the results, it can be stated that GAN is a more robust technique to maintain
the surface measurements close to the ground truth.
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2.3. Validation

Skin roughness

[ Comparison of skin roughness deviation from ground truth after ]
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In case of data reconstructed by interpolation, with
increase of sparse ratio, a large error occurs
compared to the roughness values of ground truth.

In case of data reconstructed by GAN, it was
confirmed that the error rate was significantly
suppressed despite the increase of the sparse ratio

From the results, it can be stated that GAN is a more
robust technique to maintain the surface
measurements close to the ground truth.

This new type of optical volume inpainting using deep
learning has high effectiveness, which has potential
be applied to other optical imaging technologies
beyond OCT technology
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This new type of optical volume inpainting using deep learning has high
effectiveness, which has potential be applied to other optical imaging technologies

beyond OCT technology.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.4. Conclusion

Conclusion

v OCT technology is advantageous for skin wrinkle analysis compared to existing
PRIMOS, however lacks scanning speed

i 48

OCT technology is advantageous for skin wrinkle analysis compared to existing
PRIMOS, however lacks scanning speed
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.4. Conclusion

Conclusion

v OCT technology is advantageous for skin wrinkle analysis compared to existing
PRIMOS, however lacks scanning speed

v’ To overcome, we suggest deep learning technique for rapid scanning

i 49

To overcome this issue, we suggest deep learning technique for rapid scanning.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.4. Conclusion

Conclusion

v OCT technology is advantageous for skin wrinkle analysis compared to existing
PRIMOS, however lacks scanning speed

v’ To overcome, we suggest deep learning technique for rapid scanning

v We investigated volume inpainting method using GAN (generative adversarial
network) technique

)

We investigated volume inpainting method using GAN (generative adversarial
network) technique.
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Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.4. Conclusion

Conclusion

v OCT technology is advantageous for skin wrinkle analysis compared to existing
PRIMOS, however lacks scanning speed

v’ To overcome, we suggest deep learning technique for rapid scanning

v We investigated volume inpainting method using GAN (generative adversarial
network) technique

v" Our results demonstrated accurate restoration performance and has a potential
to be applied beyond OCT technology

Our results demonstrated accurate restoration performance and has a potential to
be applied beyond OCT technology.
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Potential applications

[.:- Skin aging monitoring ]

<+ Personalized skin care

unisT

Chapter 2. OCT volume inpainting using deep learning with application to human skin

2.4. Conclusion

52

This project could potentially be useful for skin aging monitoring or personalized

skin care.

52
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2.4. Conclusion

Potential applications Relevance to thesis

< Skin aging monitoring Before After
< Personalized skin care
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health IT
P4 P3

Within bounds of my thesis, | have explored the transformation of traditional skin
assessment towards novel deep learning-integrated smart device. It could in
perspective contribute towards the telehealth, or personalized medicine directions
of digital healthcare technology.
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2.4. Conclusion

Potential applications Relevance to thesis Main contributions

J Before After

Imaging system

a . ) ® (ocm)

4 g =i “i" % * Surface analysis Ul
Image analysis

(Image processing)

+ Surface segmentation
* Flattening algorithm
* Roughness metrics

<+ Personalized skin care

[ <+ Skin aging monitoring

wearables

g

mHealth

End-to-end engineering

Healthcare
Deep learning

(Inpainting)

+ Data preparation

= * Model validation

health IT

Although my experience with hardware was limited in this project and supported
by my senior, here | outlined my personal contributions inside the research work
towards end-to-end engineering.
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Development of Deep Learning-integrated Futuristic
Biomedical Platforms for Translational Digital Healthcare

Chapter 3

Deep learning-
- ) based phenomics
Introduction un L o
i screening platform
for Xenopus laevis

Joint work with:

Seongmin Yun?!, Hyunmo Yang?!, Geoseong Na?,
Jungkweon Bae?, Taejoon Kwon!, Woonggyu Jung!

UIsan National Institute of Science and Technology, South Korea

2Samsung Research, South Korea
L D)

unisT

| Department of Biomedical Engineering, Ph.D. Thesis Presentation

In the third chapter, | will present about the development of deep learning-based
phenomics screening platform for xenopus laevis. This is a joint work with
Professor Kwon’s laboratory from UNIST and several researchers.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.1. Motivation

Existing challenges in aquatic model screening

AR

A,

Tadpoles

sy B % )
tadpole T i Xenopus ”'“ }

e
‘3‘“ po < The £ blastula

Iate tailbud {\, hr

{5 %)
Aﬁ);ﬂ'qY € gusiise
tailoud L

[ Xenopus Developmental Stages ] [ Conventional Tadpole Screening Method ]

Expensive Time-consuming Laborious
Equipment Imaging Analysis

Xenopus laevis is emerging model to study human disease and to investigate
pharmaceutical effects in vivo due to smaller size and faster developmental rates. It
is also an effective organism to observe drug effects on phenotypic characteristics
because it can provide many biological systems in a short time and remain optically
accessible at the early stages of development. However, traditional screening of

massive Xenopus data requires expensive equipment and labor-intensive inspection
under an optical microscope.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.1. Motivation

Flatbed scanner for screening

Time-lapse images

[1] Yun, et al. (2021) "Devels t of d | ing-based high-throughput phenotype screening platform of aquatic model organism embryos," International Xenopus Soci—*

P L P &
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Alternatively, the flatbed scanner was considered to obtain quantitative images for
large-scale phenotype assay. Its large field-of-view and low cost are advantageous.
We could observe the phenotypic characteristics with a reasonable resolution as
time-lapse images.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.1. Motivation

Flatbed scanner for screening
Image artifacts during imaging(!!

(1) Light scattering
: [y PG (2) wall observation
j__________.._.--—- - V 4 (3) Evaporation and condensation
2
Commercial scanner Time-lapse images (4) Movement of embryo
N a
[1] Yun, et al. (2021) "Development of deep-learning-based high-throughput phenotype screening platform of aquatic model ism embryos," ional Xenopus Soci~
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However, it was found that there were issues with the downstream image analysis,
such as light scattering, wall observation and other artifacts.
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3.1. Motivation

PDMS microwell plate

Blue cellophane

Scanner

Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

Modification of imaging conditions

Ultrasound
LED . sensor

To overcome these issues, we have suggested modifications to the commercial
scanner, converting it into a custom imaging device. We also fabricated the
customized PDMS plate for efficient and stress-free imaging of living Xenopus
samples in normal and drug environments.
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3.1. Motivation
Modification of imaging conditions

Ultrasound

PDMS microwell plate
i _sensor

Blue cellophane

Scanner

PDMS

Our goal is to achieve reduced light scattering, higher contrast, and minimize wall

observation.

Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

(1) Reduced light
scattering

(2) Higher contrast

96-well

(3) Minimized wall
observation

(4) Suppressed movement
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.1. Motivation

Generalization of image processing

Blue

Input Channel

Embryo

Tadpole

61

unisT

Our preliminary approach of analyzing embryos consisted of image processing
pipeline for identification of the regions of interest with a few simple steps.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.1. Motivation

Generalization of image processing

Blue I l
Input h
P Channel el Qutput ] Finding handcrafted p. ters for ion of whole batches is tedious

Embryo

Tadpole

But as we expanded the technique to large-scale, we had to look for handcrafted
parameters, which was necessary for better segmentation. We realized this
computational approach quickly became manual task.
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3.2. Research approach

Screening platform

[ Modified Scanner ] [ PDMS Microplate ] [ Deep Learning-based Analysis ]
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Deep-learning
Analysis

Low-cost High-throughput
Equipment Imaging

Therefore, in this work we suggest a screening platform consisting of modified
flatbed office scanner, PDMS plate and utilize deep learning technique for
automated phenotypic analysis. Our suggested system is low-cost and high-
throughput, with automated analysis.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.2. Research approach

Animal model and drug phenotypes

[1] Drug related information
3 , D used in experimental study
7hpf 13 hpf 20 hpf 53 hpf 72 hpf i b 2 onjj[Enenctyp
(egg) (gastrula)(neurula) (tailbud) (tadpole) i
BIO Wnt 10 uM Burst at gastrulation
activator
Drug-specific AG1 | Wnt 5uM Head deformation,
phenotypes!l] activator short body
at 72 *hpf c59 | wnt 30uM Short tail, tail
inhibitor bending
IWR | Wnt 150 uM Edema, waist
inhibitor bending

*hpf: hours post fertilization

[1] Bowes, Jeff B., et al. "Xenbase: a Xenopus biology and genomics resource.”
Nucleic acids research 36.suppl_1(2007): D761-0767.

*Result is presented with permission from Se~~ nin

For drug screening, four different types were used under specific concentrations to
cause noticable phenotypes under 72 hours post fertilization, affecting physical
changes in body and tails of embryos. Figure shows the deformations visually and
table summarizes the concentrations of each drug.
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Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.2. Research approach

Imaging technique

*Result is presented with permission from Geo™~ g
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The figure demonstrates modified elements of the scanner. LED and blue
cellophane was required to enhance contrast, while ultrasound was put to achieve

automation.




Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

3.2. Research approach

Imaging technique
T e
[y ..‘ cal:';:m

\ ——

3 PDMS
L?“ = L microwell plate|
o or

Scanning | 25 min / 1 scan
Resolution | 2400 dpi

Horizontally: 39.40 micron
Vertically: 44.19 micron

*Result is presented with permission from Geo™~ g

In this way, we performed imaging within 4 days by modified scanner taking 25

minutes per scan. The acquired image resolution is enough to resolve phenotypes.
The temperature was below 25°C.
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3.2. Research approach

Imaging technique
—
L, ..’ colhm::nm

\ ‘ P
o POMS
Lens
\ - microwell plate|
e S Ming, g

unisT

The suggested PDMS plate contains 61 wells and its design primarily targets for

61 wells 8.5mmx3 mm
Scanning | 25 min / 1 scan

Glass cover
o
Resolution | 2400 dpi - POMS plate
Black color sheet
Horizontally: 39.40 micron A

Vertically: 44.19 micron

*Result is presented with permission from Geo™~ g

emrbyo studies.
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3.2. Research approach

. .
Imaging technique sample output
@ controL ac1 @ sio cs9 @ wr
¢ _
Blue
celiophane|
» J.J 1 e W
PDMS
microwell plate
61 wells 8.5mmx3 mm
Scanning | 25 min / 1 scan e Glass cover =)y =j =
Resolution | 2400 dpi POMS plate =
Black color sheet —
Horizontally: 39.40 micron \/ Polariing fiter
Vertically: 44.19 micron

*Result is presented with permission from Geo~~ g

unisT

Sample output demonstrates the reduced effect of imaging artifacts in the figure.
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3.2. Research approach
Deep learning
Segmentation

\ =

Wiy

Loss function :
pixelwise binary cross
entropy

I 'ﬂ Output : Mask for ROI
rm hix;0)

L(6)

Scanned images :% yilog(h(x;; 0)) Ground-truth masks

+(1 - y;)log(1 - h(x; 0))

For analysis using deep learning technique, we acquired large number of
corresponding manual masks. We utilized U-Net architecture for segmentation to
locate embryo ROIs. At the input of our architecture, each individual well was
cropped for the size of 900 by 600 pixels.
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3.2. Research approach

Deep learning
Classification @ controL

" Segmentation @ » I / AG1
| ! - (R T O T -

il » -

® wr

=~ g

il

Output : Mask for ROI

hix;0)

[

Loss function :
pixelwise binary cross
entropy

L(6)

Scanned images :% yilog(h(x;0) Ground-truth masks

+(1 - y;)log(1 - h(x; 0))

unisr 70

The segmented output was then further processed to the input of another CNN for
the definition of drug related phenotypes.
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3.2. Research approach

Deep learning

’} 4 Segmentation

Loss function :
pixelwise binary cross
entropy
L(o)
Scanned images :% ¥i log(h(x,: 9))

+(1 - y;)log(1 - h(x; 0))

unisT

-

Output : Mask for ROI

hix;0)

Ground-truth masks

Classification

Augmentation
Random Contrast
Random Brightness

Random Rotation
Random CLAHE

*CLAHE: Contrast Limited Adaptive Histogram Equ~"" ation

71

We applied augmentation strategy focusing on the generalization of the model

towards color information.
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3.2. Research approach

Quantification

AREA

After PERIMETER

segmentation
procedure CONTROL LENGTH a

4xmxArea

- - — _

unisT

Vertical, 6 = 45°

Horizontal, § < 45°

f(X) = Co + C,X + C,X2 + C,X3

Acquired segmentation is basis for further quantitative analysis. In this outcome,
we investigated four geometrical parameters: area, perimeter, length, and
circularity. Our suggested evaluation could contribute to the observation of variant
development dynamics as well as assist to early differentiation of signals.
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3.3. Validation

Phenotype quantification

drug
NT

Length

) R— £

1 2 0 40 %
Hours Post Fertiization

73

In this result, | will describe the quantitative evaluation of embryo’s phenotypic
changes from morphological perspective. We could observe various development
dynamics under different drugs. Specifically, tracking the beginning of hatching
stage or alterations in growth of tail at ~¥30 hpf and corresponding >60 hours post
fertilization could provide meaningful insights for discovery of drugs, designed to
target certain pathways.
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3.3. Validation

Phenotype quantification
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0 ke

500 e
& LW g
g 00 e il 3
> 8

10 0 10 40
Hours Post Fertiization

unisT

0 4 “w 60
Hours Post Fortilzation

Percentage(%)

Moving distance of embryo

i <
25 50 75 160
I ! I B PR 1
1 T N ) I D R

Time(h)

Distance
(Pixel)
| o010
o 10-20
20-30
30-40
40-50
W >5

74

Another characterization could possibly be the tracking of embryo activities with
time by determination of the moving distance. For later stages of control cases, as

expected, it is increased.
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Length Circularity

CONTROL
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3.33 hpt

Yang et al, (2021) "High-throughput screening platform for quantitative phenotype analysis of Xenopus laevis with deep learning," SPIE ABC

In this video, we present the results of quantification of segmented regions with
deep learning. Control group and four drug cases are presented. Although, the
work has been carried in post-processing mode, in the perspective, this results
could contribute to building real-time, large-scale monitoring platforms for small
aquatic animal models.
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3.3. Validation

Phenotype screening

Model 1 -> Stage 1 Model 2 -> Stage 2 Model 3 - Stage 3 Model 4 -> Stage 4
2h-20h Early egg 20h-28h Hatching 28h-55h Tail development 55h~ Grown after tail

unisr 76

Although quantitative variations are provided, they are not sufficient to
differentiate clearly which type of drug were treated before dramatic
morphological changes. Therefore, we further developed CNN model for embryo
images. We trained separate CNN classifiers for 4 developmental stages of Xenopus
laevis: early egg, hatching, tail development, and grown tail.
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3.3. Validation

Phenotype screening

Model 1 -> Stage 1 Model 2 -> Stage 2
2h-20h Early egg 20h-28h Hatching

Confusion matrix Confusion matrix
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The acquired confusion matrix suggests the screening functionality can

be confirmed at each developmental period, showing higher capability at

later stages.
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3.3. Validation

Phenotype screening

True Label Prediction

20

40

60

80

Sample Index

100

120

3.3 20.4 27.9 55.0 82.9 33 20.4 27.9 55.0 82.9
Hours Post Fertilization Hours Post Fertilization

*Result is presented with permission fro rYang

Below figure on the right shows classification results as heatmap of
predicted labels compare to true labels from the validation dataset. In
the egg and hatching stages classification accuracy is not sufficient for
all drug types, however, along the tail development stage, drug treated
samples resulted in higher classification accuracy levels.
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3.4. Conclusion

Conclusion

v Aquatic model screening involves laborious procedure and expensive equipment

unisT

To conclude, Xenopus screening involves laborious procedure and
expensive equipment.

79
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3.4. Conclusion

Conclusion

v Aquatic model screening involves laborious procedure and expensive equipment

v’ To overcome, we suggest modified flatbed scanner supported high-throughput,
time-lapse imaging
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Therefore, in this study, we developed the high-throughput screening
platform with modifying flatbed office scanner.
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3.4. Conclusion

Conclusion

v Aquatic model screening involves laborious procedure and expensive equipment

v’ To overcome, we suggest modified flatbed scanner supported high-throughput,
time-lapse imaging

v" We integrated deep learning technique for automated segmentation and
investigated phenotype changes quantitatively
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Based on the power of massive data acquisition and the deep learning-
based technique, quantitative phenotype analysis, and automated
screening capability.
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3.4. Conclusion

Conclusion

v Aquatic model screening involves laborious procedure and expensive equipment

v’ To overcome, we suggest modified flatbed scanner supported high-throughput,
time-lapse imaging

v" We integrated deep learning technique for automated segmentation and
investigated phenotype changes quantitatively

v" Our results suggest proposed platform has potential to become a promising tool
for massive and dynamic observation, and could be applied to developmental
studies, drug testing, and phenotype-genotype assays
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The proposed platform could become a promising tool in massive and
dynamic observation based biological studies, such as developmental
studies, drug testing, and phenotype-genotype assays.
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3.4. Conclusion

Potential applications
<+ Drug screening
< Precision medicine
®
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This project could potentially be useful for drug screening or precision medicine
applications.
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<+ Drug screening
< Precision medicine
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3.4. Conclusion

Within bounds of my thesis, | have explored the transformation of aquatic model
screening towards novel deep learning-integrated smart device. It could in

perspective contribute towards the personalized medicine, or health IT directions
of digital healthcare technology.
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Relevance to thesis

wearables

g

mHealth

@ N

Chapter 3. Deep Learning-based Phenomics Screening Platform for Xenopus Laevis

telehealth

3.4. Conclusion

Main contributions
T Imaging system
(Scanner & PDMS)

* Designing
* Hardware prototype

Image analysis
(Image processing)

+ Segmentation
* Quantification

Deep learning
(Segmentation)

+ Data preparation
* Model validation

End-to-end engineering

Finally, here | outlined my personal contributions inside the research work towards

end-to-end engineering.
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Development of Deep Learning-integrated Futuristic
Biomedical Platforms for Translational Digital Healthcare

Chapter 4

<i‘

Advanced ear
Introduction rnin t otk o
2 s at Al-assisted
mobile otoscope

Joint work with:
. P 1 i it i
Hyunmo Yangl, Nurbolat Almakovl, Geoseong Nal, Yujln Ahnl, UIs?rjl National Institute f’f Science and Technology, South Korea
] S Yoo2, Gil-Jin J 3 ) H ] 4 W ] 1 2Incipian LLC, CA, The United States
aork 007, Gil-Jin Jang", Jeong Hun Jang", Woonggyu Jung 3Kyungpook National University, South Korea

“Ajou University Hospital, South Korea ‘ >
)

unist Department of Biomedical Engineering, Ph.D. Thesis Presentation

In the last chapter, | will present about the development of “Advanced ear
examination using Al-assisted mobile otoscope”. This is a joint work with Professor
Jang from Ajou university hospital and several researchers.
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4.1. Motivation

*ENT: Otolaryngologist.

] o-0.88

= o0.89-5.97

[ ] Data not available

unisT

Short for ear, nose and throat specialist

Bl 598-275
B 27.51-133.25

[ Not applicable

Chapter 4. Advanced Ear Examination Using Al-assisted Mobile Otoscope

Number of ENT specialists per million population,
worldwide in 2013(1!

[1] World Health O\

*Multi-country of national

capacity to provide hearing care." (203"

87

In 2013 multi-country assessment of hearing care capacity held by World
Healthcare Organization, there was a statistics regarding the number of ENT
specialists' availability across various countries. Just to clarify, ENT specialist is an
otolaryngology doctor equivalent and stands short for ear, nose and throat. A
critical finding to pay attention in this report is that there is a considerable number
of countries which lacks ENT doctors in low and lower-middle income segment.
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4.1. Motivation

Comparison of diagnostic accuracy
between pediatrician and ENT specialist(2]

AOM Retraction OME

*OME: Otitis media with effusion, AOM: Acute otitis media

[2] Pichichero, Michael E., and Michael D. Poole. "Assessing diagnostic accuracy and tympanocentesis skills in the
management of otitis media.” Archives of pediatrics & adolescent medicine 155.10 (2001): 1137-1142.

88
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Essentially, such an absence of expertise knowledge in this domain could negatively
affect in proper medical treatment decisions. For instance, studies have indicated a
23% distinction in technical competence between pediatricians and specialists to
correctly diagnose possible a condition.
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4.1. Motivation

Comparison of diagnostic accuracy
between pediatrician and ENT specialist(2]

AOM Retraction OME

*OME: Otitis media with effusion, AOM: Acute otitis media

[2] Pichichero, Michael E., and Michael D. Poole. "Assessing diagnostic accuracy and tympanocentesis skills in the
management of otitis media.” Archives of pediatrics & adolescent medicine 155.10 (2001): 1137-1142.

However, the recent advancement of the deep learning opens a possibility to
compensate the current limitation of physician knowledge to reach ENT level
diagnosis.
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4.1. Motivation

Comparison of diagnostic accuracy
between pediatrician and ENT specialist(2]

2 We suggest development of

76 non-specialist and affordable

" :
Al o
t S e
| L
| ©
: -
50 &
b
S
<

*OME: Otitis media with effusion, AOM: Acute otitis media

. .
(2] Phichers, ichel €. and Wichael 0. o, “Assssing gt scurcyad ympanocentess sl the ear examination tool

management of otitis media.” Archives of pediatrics & adolescent medicine 155.10 (2001): 1137-1142.

Therefore, we believe equipping non-specialists with an assistive technology in an
affordable manner could support a more accurate diagnosis, thereby improving the
ear examination situation within low resource settings.

90



4.2. Research approach

Chapter 4. Advanced Ear Examination Using Al-assisted Mobile Otoscope

Deep learning for otolaryngology

Study Application Accuracy

Basaran (2020)3! Diagnosis of middle ear 90.48%
inflammation

Cha (2019)%I Detection of ear and mastoid 93.67%
disease

Livingstone (2019)5! | Otologic disease screening 84.4%

v’ Convolutional neural networks are reported strong performance

[3] Cha, et al, (2019), "Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database.” EBioMedicine
[4] Livingstone, et al, (2019), "Building an Otoscopic screening prototype tool using deep learning.” Journal of Otolaryngology-Head & Neck Surgery
[5) Basaran, et al, (2020) "Convolutional neural network approach for automatic tympanic membrane detection and classification.” Biomedical Signal Processing and Control

unisr 91

A survey of previously reported research efforts has demonstrated on the potential
of Al in otolaryngology. These consider different applications, including diagnosis of
middle ear inflammation and otologic screening purposes. More specifically, they
unite convolutional neural networks as dominant machine learning technique with
high performance.
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4.2. Research approach

Ear examination platform

[ A. Otoscope } { B. Mobile app ]

android

C. Otolaryngology Al

However, to tackle the real-world problem a holistic approach in the form of
targeting platform is required. Therefore here, we suggest a custom otoscope and
mobile phone application with on-device Al an accessible platform to enhance
traditional ear examination with minimal training. A physicial component was
determined from the perspective of the end user, who is potentially a general
physician residing without superior infrastructure.
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4.2. Research approach

Ear examination platform \
Otoscope Probe t})\

[ A. Otoscope ] K

Touch Sensor Button
~ Raspberry Pi Camera

Pimoroni Chip Raspberry Pi Zero

-~ Battery
Power Switch
Battery: ~2h
Battery Charge Adapter Cost: <$ 1,000
*Result is presented with permission from Nu=*  at

93
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Our suggested otoscope is minimalist and effectively adapted for the ear inspection
purpose. Empirically, it withstands 2 hours of continuous operation and lies under

$1000 price range.
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4.2. Research approach

Ear examination platform

( B. Mobile app ]

Custom developed
Android application

v A. Wireless Stream:
<100ms low-latency

Tested on Galaxy S9+, S10+,Note
!
L4

v’ B. Real-time Al inference on
mobile GPU <10ms/image

As of the mobile application side, it is based on the customly developed Android
software merging several functionality, such as low-latency video streaming, saving
image for later review, and real-time on-device Al inference
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4.2. Research approach

Ear examination platform

C. Otolaryngology Al ]

unisT

Further, let me focus your attention on our deep learning approach used for this
study.

95
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4.2. Research approach
I . [

Eardrum
(n=5,876)
(N=21522) NOR MEE PER RET TYM

Dataset

Normal [ Middle ear Perforation Retract|on ( Tympanosclerosis
(n=3,254) effusion (n=509) (n=1,187) (n=594) (n=332)

(X

Received from Department of Otorhinolaryngology, Ajou University Hospital, IRB (AJIRB-MED-OBS-21-409)

The integral part of the deep learning technique is data acquisition. Following the
IRB protocol, our collaborators from the Department of Otolaryngology of Ajou
University Hospital in South Korea provided us with 5 commonly represented ear
conditions accumulated within a clinical setup, resulting in over 5,800 unique
patient cases.
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4.2. Research approach
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Dataset e
@ ©
)] /\/\/\/\/\/\/\/\_g : @
Q 444444444 VO LC L R AN i%ﬂﬁ_’_.g @
© ol X |
® - v ®
‘\_\ Conv
----------- Extracting features using ResNet-18!6!
Epoch: 1, Acc: 0.269 Epoch: 1, Acc: 0.494
EFCREWED E«-H‘EN.E
HEROREE MHE0 - =
b e Falatecd [ o] -}l |
TouE e Mia gl BEN™.H S8
Sh fesgmas
[ EEEEATL ] (. B rnir;
SR IC AR A Ne=N-H- ~
Training entire model Transfer learning

--- Revealing classification using Grad-CAM[7]

LGrad-cam = ReLU( ZZZ aAk )

*Linear combination; Global average pooling; Backprop gradients

NORMAL

*®

\
O

O™

[6] Selvaraju, et al, (2017), "Grad-cam: Visual explanations from deep networks
via gradient-based P of the IEEE i
on computer vision

(7] He, et al, (2016), "Deep residual learning for image recognition," Proceedine; of
the IEEE conference on computer vision and pottern recognition.
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Based on acquired data, with the help of existing explainable Al techniques, we
were curious to identify which patterns and meaningful regions contribute to the
discrimination of ear diseases. Our observation led to constitute that region inside
the actual tympanic membrane is more important to successfully classify diseases.
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4.2. Research approach

Dataset Visualizing feature latent space using t-SNE!8!

(N, 512) - dimensional vector

ResNet-18

A BNe B BN B N DA BA B
(8 S VI BN I BV VIR BV

Conv [8] Van der Maaten, et al, (2008), "Visualizing data using t-SNE," Journal of machine learning
research

unisT

A further interesting investigation would be knowling how machine could
independently group various diseases. For this purpose, we utilized latent space of
feature vector, extracted from the last convolutional layer of basic ResNet
architecture. This vector was consequently transformed into 2D space using t-SNE
dimensionality reduction technique. This small experiment, apparently,
demonstrates the formation of clusters.
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4.2. Research approach

Model

[ Input ]——[ Deep neural network ]—-[ Output ]

v" We want to model tympanic membrane ROI and its class as output

Our previous observations suggest that Al is in favor to focus on the tympanic
membrane region and could cluster clearly. Therefore, it led us to impose a

requirement in the development of deep neural network component with object
detection-oriented task.
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4.2. Research approach

v We utilize YOLOVS! for
simultaneous tympanic membrane

é; detection and classification

Classification

Regression

<class, x, y, width, height>

9] Glenn, et al, (2020). ultralytics/yolovs: v3.0 (v3.0). Zenodo. https://dol.org/10.5281/zenodo. 3983579
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When we addressed our attention to the computer vision field, YOLOv5 has been a
prominent method combining robust performance and quick response. Although at
architectural complexity, the efforts of open-source community made this model
significant and well-engineered, which influenced our decision to utilize it for
tympanic membrane data.
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4.2. Research approach

Ear examination platform
Y Y Wireless: WiFi
)" v Real-time: <100ms \

B. Mobile app ]

[ A. Otoscope

v Intelligent: YOLOV5
android

v’ Affordable:
total < $1500

C. Otolaryngology Al

Let me reiterate on our suggested ear examination platform one more time. It
consists of the custom otoscope, mobile application, and on-device Al model to

support the real-time diagnosis.
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Image quality

[ Ours ] [
B VN30 LU VW EDHE
@O0 YW PI EHHIIC
NBBSVGD HE

\ \.” \d./(%‘ "«
9170530 IS L

Clinical ]

WWCOHS O A (“(0 '
RLO0GEICH D Y s ¥,

We were interested to visually compare images acquired from our developed
otoscope and the clinical setup. Therefore, in this slide, we summarize the results

of 48 randomly picked samples after the conducted field test examinations in Ajou
University Hospital.
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4.3. Validation

Image augmentation ...

Original . 75% random .--.
g Blurring
- - - . . .

brightness contrast color shift Q

Random

unisT

To minimize the effect of inherent distinctions present between clinical setup and
our platform in image color and image quality, we additionally introduced blurring
and random color shift operations during dataset augmentation to increase the
overall accuracy of the deep learning model.
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4.3. Validation

Image color

"
@ * | -
-
(@] /)
— s 121.7 953
ret m= : U= 93.3 U= A
(512,512,3) o =679 g =55.9 o =569
’ E—
_ ]
o
(™) -
— 129.2 65.7
u= . u =932 u=65.
(512,512,3) o =816 o = 62.1 o =452
104

For instance, in this slide, you can see a summary of color variance investigation

between our device and clinical setup.
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4.3. Validation
Image quality
S
o l:l Commercial |:| Commercial
3
e |:| Smartphone _ |:| Smartphone
E £
) 3
) € 304 E 351
= 3
= 51 o 371
S 20¢ = 27
— b= S 201%
2 151 ©
w© 2 w 7
L &1 =10t
£ 51 54
O 0 ] i 0 ! '
10 15 20 10 15 20
Working distance (mm) Working distance (mm)
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Let’s also take a closer look at both images in terms of the quality, characterized by
resolution and field of view parameters. At the smaller field of view, our suggested
setup provides a superior resolution at working distances of 10, 15, and 20 mm,
within which tympanic membrane distance is typically represented.
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4.3. Validation

Al performance

NOR

MEE

Predicted
PER

RET

YM

NOR  MEE PER
True

unisT

Our inspection of the Al model performance suggested on the accurate results for
tympanic membrane detection and classification, with overall of over 83% precision
and 80% recall. Interestingly, the compressed trained model produced only 7MB of
size, which states on the practicability to process inference on the mobile devices in

real-time.

RET

Evaluation Configuration
Metrics Value Parameter Description
Epochs 300 Layers 224
Precision 0.834 Hyperparams | 7,064,698
Recall 0.808 GFLOPs 16.4
mAP, ¢ 0.87 Size (MB) 14.4
MAP, 5005 0.568 Fp16 (MB) 6.9
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4.3. Validation

Al performance

Class probability identification in validation set

2. MEE 3. PER 4 RET 5.TYM

NN {3

\ /

I8 BN B
ﬂ,n OE BN

Reasoning results with class activation maps

unisr 107

One can further analyze the reasoning behind the deep learning model
performance and find important regions contributing inference through the
investigation of activation maps at certain levels. This research direction is another
central topic of the deep learning community and is under active exploration.
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4.3. Validation

Demo

18T

Screencast

Co

(In collaboration with otologist, professor (JHJ) from Ajou University Hospital, Suwon, South Korea, 2021)

108
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We finally demonstrate the actual protocol of user application in this video. First,
the doctor connects the device, enters relevant patient information and does the
necessary setup. After that he can start the ear inspection procedure. He is
supported with real-time Al diagnosis and can capture images for later review.
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4.4. Conclusion

Conclusion

v’ Specialist ear examination remains common issue in low-income countries

109

Specialist ear examination remains common issue in low-income countries.
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4.4. Conclusion

Conclusion

v’ Specialist ear examination remains common issue in low-income countries

v' To overcome, procedure needs assistive and affordable technology
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To overcome this problem, we believe procedure needs a supportive and affordable
technology.
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4.4. Conclusion

Conclusion
v’ Specialist ear examination remains common issue in low-income countries
v' To overcome, procedure needs assistive and affordable technology

v Here, we propose a mobile, deep learning-assisted otoscope

111

In this study, we propose a mobile, deep learning-assisted otoscope for this role.
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4.4. Conclusion

Conclusion

v’ Specialist ear examination remains common issue in low-income countries
v' To overcome, procedure needs assistive and affordable technology

v Here, we propose a mobile, deep learning-assisted otoscope

v" Our results demonstrated high diagnostic accuracy indicating potential to
become a viable screening solution in low-resource, non-specialist settings.

112

Our results demonstrated high diagnostic accuracy indicating potential to become a
viable screening solution in low-resource, non-specialist settings.
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Potential applications

< Telemedicine
<+ Point-of-care diagnostics

Setup 1.

.

Google Glass
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4.4. Conclusion

113

This project could potentially be useful for telemedicine or point-of-care

diagnostics.
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.

Google Glass
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Relevance to thesis

S

‘wearables
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Az

perscnalized
medicine

5

health IT

4.4. Conclusion
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Within bounds of my thesis, | have explored the transformation of traditional ear
examination tool towards novel deep learning-integrated smart device. It could in
perspective contribute towards the mobile health, or telehealth directions of digital

healthcare technology.
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Potential applications

< Telemedicine
<+ Point-of-care diagnostics

Setup 1.

.

Google Glass
Otoscope

from Translational Biophotonics Lab website
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@

Chapter 4. Advanced Ear Examination Using Al-assisted Mobile Otoscope

Relevance to thesis

Az

perscnalized
medicine

health IT

4.4. Conclusion

Main contributions

T Imaging system
(Otoscope)

* Designing

* Hardware prototype

Integration
(Android app)

* Functionality
* Interface

Deep learning
(Detection)

+ Data preparation
* Model deployment

End-to-end engineering

Finally, here | outlined my personal contributions inside the research work towards
end-to-end engineering.




Development of Deep Learning-integrated Futuristic
Biomedical Platforms for Translational Digital Healthcare

Introduction

mobil

unist Department of Biomedical Engineering, Ph.D. Thesis Presentation

Let me finally conclude today’s presentation.

Chapter 5

Conclusion
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5.1. Summary

[ Development of Deep Learning-integrated Futuristic Biomedical Platforms for Translational Digital Healthcare ]

1. Motivation
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The extensive use of digital health technologies creates challenge of analysing large
and complex data, where human is incapable. At the same time, the capacity of
artificial intelligence keeps expanding. One of the opportunities could be the
suggestion of assistive smart devices. Currently, conventional biomedical devices
are developed with fixed requirements. They are often primitive and static. In
contrast, smart biomedical devices possess built-in intelligence to support human
decision. The transformation from one category to another is an open question.
And the exploration of such opportunities was my primary interest during the PhD
program.
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5.1. Summary

[ Development of Deep Learning-integrated Futuristic Biomedical Platforms for Translational Digital Healthcare ]
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In chapter 2, | presented advantages of OCT for human skin study and how deep
learning technique could be integrated for volume inpainting in order to make OCT
scanning more efficient. Our results are promising, showing little deviation of
image quality restoration parameters as well as roughness compared to the
conventional interpolation method.
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5.1. Summary

[ Development of Deep Learning-integrated Futuristic Biomedical Platforms for Translational Digital Healthcare ]
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In chapter 3, we addressed challenges of phenotype screening problem by the
development of the high-throughput, modified scanning platform. Here, deep
learning technique was utilized for further automated phenotypic analysis and
screening of massive embryo timelapse images. The proposed platform could
become a promising tool in dynamic observation based developmental studies or

drug testing applications.
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Chapter 5. Conclusion

[ Development of Deep Learning-integrated Futuristic Biomedical Platforms for Translational Digital Healthcare ]
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Finally, in chapter 4, we target the shortage of ENT doctors in low-income countries.

120

For that reason, we suggest mobile otoscope platform with on-device Al to equip
non-specialists with assistive technology in an affordable manner. Our results
suggest it could support a more accurate diagnosis, thereby improving the ear
examination situation within low resource settings.
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In this work, | focused on the development of novel biomedical platforms for digital
healthcare, integrating deep learning techniques. In the perspective, | believe there
are two interesting ways for my research and professional trajectory.
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One could possibly be exploring better ways of visualization and making more the
overall experience of delivery more convenient. These could include extension for
three-dimensional technologies, as well as adaptation of AR/VR technology.
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Another direction is investigating additional ways to interpret information by
understanding the richness and diversity from various source signals. For this
reason, | believe multimodal Al techniques could assist this task.
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Here | have listed research activities during the period of my Ph.D. program. | am
currently working on final preparations of manuscripts for submission.
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Chapter 5. Conclusion

5.4. Achievements

Skin paper is in preparation to . Will be submitted in March.
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One of them regarding the skin project will be edited more by Professor Jung. He
has not seen it yet however we believe it to be submitted within March.
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Closing remarks

Dear committee members,

Before we go to the Q&A session, | would like to say a few words of closing
remarks.

| would like to thank you for the valuable feedbacks which helped me to grow not
only from our last meeting, but also for the continuous support during the whole
period of my PhD program.

When | look back, | feel to have grown a lot. | widened my outlook and deepened
expertise. Also, | acquired many skills, which hopefully will serve well in my later
career. But more importantly, | believe | became more patient and humble.
Although this journey was challenging, quite often | was lost in the curiosity of
research and passion for engineering. My acknowledgement here primarily goes to
my family, friends, labmates. The role of my supervisor, professor Woonggyu Jung is
doubtlessly huge. He always kept advising, supporting and cheering up for whom |
am grateful, especially | admire his endless enthusiasm :)

Further, | hope to wrap up the works within the soonest period and concentrate on
the next stage of life, building professional career. Given the time and resources, |
am now confident to explore opportunities in the development end-to-end
solutions for biomedical fields and not only, thanks to obtained research training.

I am also grateful to UNIST, and hope | can contribute to its international reputation

127



later in my career as its alumni.
That said, | am ready for your comments and expert opinions, to evaluate the
qualification of the presented thesis.
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Thank you for your attention!

Q&A

Correspondencg:
s.askaruly@gmail.r,*);))

Finally, thank you for your time and attention. If you have any questions regarding
the defense presentation, | would be glad to answer them now.
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