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Abstract: Since glaucoma is a progressive and irreversible optic neuropathy, accurate screening
and/or early diagnosis is critical in preventing permanent vision loss. Recently, optical coherence
tomography (OCT) has become an accurate diagnostic tool to observe and extract the thickness of
the retinal nerve fiber layer (RNFL), which closely reflects the nerve damage caused by glaucoma.
However, OCT is less accessible than fundus photography due to higher cost and expertise required
for operation. Though widely used, fundus photography is effective for early glaucoma detection only
when used by experts with extensive training. Here, we introduce a deep learning-based approach to
predict the RNFL thickness around optic disc regions in fundus photography for glaucoma screening.
The proposed deep learning model is based on a convolutional neural network (CNN) and utilizes
images taken with fundus photography and with RNFL thickness measured with OCT for model
training and validation. Using a dataset acquired from normal tension glaucoma (NTG) patients, the
trained model can estimate RNFL thicknesses in 12 optic disc regions from fundus photos. Using
intuitive thickness labels to identify localized damage of the optic nerve head and then estimating
regional RNFL thicknesses from fundus images, we determine that screening for glaucoma could
achieve 92% sensitivity and 86.9% specificity. Receiver operating characteristic (ROC) analysis results
for specificity of 80% demonstrate that use of the localized mean over superior and inferior regions
reaches 90.7% sensitivity, whereas 71.2% sensitivity is reached using the global RNFL thicknesses for
specificity at 80%. This demonstrates that the new approach of using regional RNFL thicknesses in
fundus images holds good promise as a potential screening technique for early stage of glaucoma.

Keywords: glaucoma; normal-tension glaucoma; color fundus photographs; optical coherence
tomography; retinal nerve fiber layer; convolutional neural networks; screening

1. Introduction

Glaucoma is a chronic and irreversible disease caused by damage to the optic nerve
that can lead to vision loss and blindness [1–3]. Glaucoma is typically characterized by
the progressive degeneration of retinal ganglion cells, resulting in morphological changes
in both the optic nerve and retinal nerve fiber layer (RNFL) [4–8]. As no optimal cure
for glaucoma currently exists, typical treatments only aim to interrupt the progression of
functional damage and visual impairment. Thus, early detection of glaucoma is critical to
prevent significant vision loss.

Retinal fundus photography monitors the retinal structure and is also widely used for
initial glaucoma screening. Fundus photography provides the two-dimensional surface of
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the retina, enabling the identification of the characteristic changes in the optic disc due to
increased intraocular pressure. These changes include rim thinning, notching, cupping, and
altered cup-to-disc ratio [4–8]. However, it suffers from low reproducibility and sensitivity
and is inherently limited regarding quantitative and volumetric deformations, such as
thinning of RNFL [9,10]. In addition, grading glaucoma based on fundus photographs may
vary depending on the physician’s experience and subjective factors. Thus, current fundus
photography technique, though still a valuable tool in glaucoma care, may not provide a
general screening capability in primary care settings.

To date, optical coherence tomography (OCT) has become an indispensable tool to
detect glaucoma, providing cross-sectional tissue structures noninvasively in real time.
Since its introduction, OCT has been widely used in ophthalmology, given its unique ability
to image deep ocular tissues and quantitatively analyze the RNFL [11–13]. Currently, OCT
allows rapid, three-dimensional, wide-angle imaging of retinal structures and has become
a standard tool in clinical practice. Numerous studies have also demonstrated that OCT
is an effective tool for glaucoma diagnosis, progression monitoring and quantification of
structural damage [14–18].

However, despite its increasing distribution, routine checkups using OCT remain
highly limited in most countries. In addition, using OCT for screening purposes or moni-
toring glaucoma patients is difficult because of the expensive costs and the rarity of trained
experts outside specialized clinics. It is estimated that up to 90% of glaucoma patients do
not know they have the disease in developing countries [19]. Therefore, there is a pressing
need for a cost-effective strategy for glaucoma screening in low-resource settings.

With the recent development of deep learning (DL) techniques, several researchers have
shown the capability of automated ocular disease screening using color fundus photography
by training DL models [20–28]. At the initial development of glaucoma screening DL models,
researchers trained the model using human-labeled fundus images [29]. However, human
labeling has limited potential due to subjective labeling and low reproducibility [30–32].
These obstacles were overcome by hiring OCT data as the reference for objective assessment
of a given fundus photo with OCT’s quantitative structural information [33]. Moreover,
studies showed that trained DL models could infer quantitative values of glaucomatous
structural deformation from fundus photographs, for example, retinal nerve fiber thinning
and neuro-retinal rim loss [33,34].

Nonetheless, practical challenges remaining for the DL algorithms for screening with
the purpose of early prevention. Despite secured objective assessment of glaucoma by
OCT measurement as a reference, high accuracy and sensitive screening for early-stage
glaucoma could not be guaranteed exclusively from overall or summarized quantitative
values. This is largely because localized defects of RNFL are not well reflected in averaged
thicknesses. It had been shown that the screening test based on the average of RNFL
was poor in detecting early stage glaucoma while, antithetically, using regional RNFL
thinning showed high screening sensitivity [14]. Therefore, to develop a highly accurate
and sensitive screening protocol for detecting glaucoma at an early stage, quantitative
regional information should be used to reference assessment.

In this study, we acquired the data from normal tension glaucoma (NTG) patients
with the intention to develop a screening protocol for early-stage glaucoma. The NTG is the
subcategory of primary open angled glaucoma (POAG) with intraocular pressure (IOP) within
the normal range and is observed more frequently in the Asian population [3,35,36]. NTG has
similar symptoms to other glaucoma types, such as glaucomatous optic neuropathy, and
corresponding visual field (VF) defects [37]. We focused on the localized RNFL defect which
is commonly observed both in high IOP POAG and NTG [38–40]. With the dataset from
NTG patients, therefore, an inclusive glaucoma screening protocol using RNFL thickness
can be tested.

We developed a DL model that infers regional RNFL thickness values from color
fundus photos. The proposed model is designed to infer regional RNFL thickness from
each sectionalized optic disc image along 12 subregions. Predicted RNFL thickness is
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categorized into three thinning levels by comparison with the normative reference and
utilized for a highly sensitive screening protocol for glaucoma detection.

2. Materials and Methods
2.1. Data Preparation

We acquired the data from 303 patients diagnosed with normal tension glaucoma
(NTG) in Ulsan University Hospital ophthalmic clinic to build our DL model and its
validation. The enrolled NTG patients had a peak intraocular pressure of consistently
≤21 mmHg without glaucoma medication, a normal open angle, typical glaucomatous
optic nerve and visual field changes, and the absence of an ocular or systemic disorder
responsible for the optic nerve damage. Before the diagnosis, at least two reliable and
reproducible visual field examinations were obtained using the Humphrey field analyzer
and the Swedish Interactive Threshold Algorithm 24-2 test program (HFA 24-2; Carl Zeiss
Meditec, Inc., Dublin, CA, USA). A total of 557 eyes from 303 patients were acquired for the
dataset. The average of the mean deviation (MD) of collected eyes is −4.69 dB and about
72.6% of cases were in early stage (MD > −6 dB). The averaged visual field index (VFI)
of collected eyes is 88.39%. The dataset comprised color fundus photographs (TRC-NW8,
Topcon, Tokyo, Japan) and spectral-domain OCT (SD-OCT) scans (Triton and Atlantis,
Topcon, Tokyo, Japan) from collected eyes.

Collected raw data were preprocessed for preparing the training set, as follows. The
color fundus photographs of size 3216 × 2136 were processed in four steps to compart-
mentalize the optic disc region: (1) convert color fundus image to gray scaled image,
(2) perform the Gaussian filtering with kernel size of 65 × 65, (3) brightest spot identifica-
tion by scanning the max intensity pixel, since the center of the optic disc is generally the
brightest in fundus photos, and (4) cropping a circular region of 320 × 320 pixels around
the center of the optic disc. The cropped fundus photographs were manually reviewed
by an expert to ensure the centering of the optic disc. Manually filtered preprocessed
images were sorted into an image dataset without artifacts such as whitening, blurring,
dusk, camera artifacts, dust and darkness. OCT measurements were acquired from the
report generated by analysis software (IMAGEnet6, version 1.24, Topcon, Japan). From a
given SD-OCT scan, the software averages data over 360◦ for the global RNFL thickness
and 30◦ for corresponding regional RNFL thicknesses along the circle with a diameter of
3.45 mm centered at the optic disc. We assumed that a preprocessed fundus photograph
and corresponding OCT scan were rotationally aligned. A total of 940 pairs of color fundus
photographs and SD-OCT scans within 180 days (mean 31.4 days and standard deviation
62.9 days) were collected. Fundus photographs were sectionalized along 30◦ to produce a
fan-shaped optic disc image toward each sub-regional direction and matched with corre-
sponding RNFL thickness, accounting for 11,280 data pairs. A summary of collected raw
data is given in Table 1.

Table 1. Summary of dataset acquired from the NTG patients for the study.

Collected Dataset

Number of patients 303
Number of eye examinations 557
Number of Fundus-OCT paired data
Number of segmented Fundus and OCT value pairs

940
11,280

Patients’ age (years) 54.7 ± 13.9
Gender (% of female) 48.3
Intraocular pressure (mmHg) 13.87 ± 3.01
Mean deviation (dB) −4.69 ± 5.37
Visual field index (%) 88.39 ± 15.63
Global RNFL (µm) 84.31 ± 16.21
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Collected raw data was split into training (80%) and test (20%) sets. The random
sampling process was at the patient level to avoid biased estimation of test performance.
For the training process, data from 242 patients with 730 pairs for global RNFL and
8760 pairs for segmented were used. The remaining 210 pairs for global RNFL and
2520 pairs segmented from 61 patients were utilized as the holdout test set for model
performance evaluation and further screening protocol test.

In addition, we acquired 583 fundus photographs from 522 normal patients who
visited the Ulsan University Hospital HealthCare Center. Among the fundus photographs
from normal patients 103 suspicious fundus photos from 93 patients were selected by a
glaucoma expert; however, OCT measurements were not performed for normal patients.
Additional fundus images from normal patients were used to verify the applicability of
our approach. This study for clinical use was approved by the Ethics Committee of Ulsan
University Hospital (Approval No. 2020-09-001).

2.2. CNN Architecture for RNFL Prediction and Training

To predict RNFL thickness from fundus photographs, we utilized a convolutional
neural network (CNN) [41]. Figure 1b shows that the proposed model architecture consists
of four convolution blocks and fully connected layers. Each convolution block comprises
double convolutional layers with a kernel size of 3 × 3 and a stride of 2. After the convo-
lutional layers, batch normalization and max-pooling layers are used for stable and fast
learning [42]. The depth of the convolutional layers increases from 16 to 128 to extract
enough image features for accurate estimation of RNFL thickness. The fully connected
layer with 128 nodes is placed after the final convolution block, which gathers high di-
mensional features extracted by convolution blocks. The final node returns the estimated
RNFL thickness from the merged and weighted features that transform into a numeric
value from the input fundus photograph. Nonlinearity is introduced by the rectified linear
unit (ReLU) activation at each convolution and fully connected layer [43]. At each step of
the training, randomly sampled 32 pairs have formed a minibatch. To increase the diversity
and heterogeneity of the training set, the data of the fundus photographs were augmented
by applying random contrast, brightness, hue and saturation. The mean squared error
(MSE) is used for the loss function and model parameters were updated by the Adam opti-
mizer [44]. We additionally trained the model with an identical method to predict global
RNFL thicknesses from a whole optic disc image for comparison with former studies. The
proposed CNN models were trained and validated based on the five-fold cross-validation
method using the training set from 242 patients. In total, 5 models were trained for each
global and regional RNFL prediction, and the final models were then selected based on
performance evaluation using validation sets.

Training, validation, image processing, and visualization were performed using the
Python (version 3.6.12) programming language with open-source libraries, TensorFlow
(version 2.4.1), OpenCV (version 4.5.1) and Matplotlib (version 3.3.4).

2.3. Estimation and Categorization of RNFL Thickness for Glaucoma Screening

Two trained CNN models predicted the RNFL thickness value from the whole and
sectioned optic disc images. For a given fundus image input, CNN outputs RNFL thickness
in µm scale. For each eye, we predicted 13 RNFL values: the global RNFL (360 degrees)
and 12 regional RNFL corresponding to each direction (30 degrees).

The thinning level of RNFL is categorized into three levels (green, yellow, and red) by
comparison between OCT measured and the normative database [45]. The green indicates
normal range, between 95% to 5% of the reference data; the yellow indicates borderline
range, between 5% to 1% of the reference data; and red indicates beyond range, outside 1%
of the normative reference data [46].
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for RNFL thickness estimation from segmented retinal fundus images are presented. Note that the 
model for estimation of global RNFL has the input size as 320 × 320 × 3 and thus sizes of the follow-
ing convolution blocks were adjusted. 
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grees) and 12 regional RNFL corresponding to each direction (30 degrees). 

The thinning level of RNFL is categorized into three levels (green, yellow, and red) 
by comparison between OCT measured and the normative database [45]. The green 

Figure 1. Overview of the proposed study. (a) Fundus images and OCT images were segmented into
12 subsections and then the segmented images were paired with the RNFL thickness measurements
from OCT to train the model. The trained CNN model can predict RNFL thickness from a subdivided
retinal image. The label of the thinning level for an estimated RNFL of a given region is determined
by comparison with the normative reference data. (b) The details of CNN architecture for RNFL
thickness estimation from segmented retinal fundus images are presented. Note that the model
for estimation of global RNFL has the input size as 320 × 320 × 3 and thus sizes of the following
convolution blocks were adjusted.

We used the predicted thinning level of RNFL for screening criteria, as determined by
a comparison between the CNN predicted RNFL thickness and the normative database.
In a previous study, the screening capability of RNFL measurement using SD-OCT was
investigated [14]. Positive diagnosis was made for glaucoma if any abnormal or borderline
level is included in interested regions of a given fundus image. Comparison of various
combinations of subregion were tested to demonstrate that screening performance strongly
depends on subregion variations.

Receiver operating characteristic (ROC) analyses were performed for global and re-
gional predicted RNFL thicknesses. The ROC curves reveal the tradeoff between the true
positive rate (TPR or sensitivity) and the false positive rate (FPR or 1-specificity). The area
under ROC curve (AUC), sensitivity for fixed specificities at 80% and 95% and correspond-
ing threshold of RNFL thickness values were investigated. The research workflow and how
acquired datasets were used at each step is summarized in Figure 2.
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Figure 2. Summary of research workflow. (a) Data acquired from NTG patients were utilized for
model training and evaluation. (b) Screening test and ROC analysis performed with test set plus data
from normal patients.

3. Results
3.1. Model Evaluation and Regional RNFL Thinning Level

Figure 3 shows the relationship between estimated RNFL thickness from optic disc
photograph by trained CNNs and OCT measurements in the test set for the global and the
regional RNFL. To verify the model performance, we confirmed the mean absolute error
(MAE) between predicted and OCT measured for the regional RNFL prediction from the
trained model, the R-squared value and the Pearson’s correlation coefficient, as shown in
Table 2.
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Table 2. A summary of performance metrics. The mean-absolute-error (MAE), the R-squared, and
the Pearson’s correlation coefficient between prediction of RNFL from trained models and true
OCT-measurements.

Model Predict MAE R-Squared Pearson’s
Correlation

Previous study [33] Global RNFL 7.39 µm 0.693 0.832
Proposed CNN Global RNFL 9.38 µm 0.502 0.710
Proposed CNN Regional RNFL 16.22 µm 0.578 0.760

The MAE for the global RNFL prediction from the proposed architecture achieved
9.38 µm, which is a similar error range compared to a previous study [33], which was
7.39 µm. The MAE for the regional RNFL thickness prediction is more significant than the
global RNFL prediction. The higher MAE in regional RNFL prediction is attributable to the
reduced information amount due to a sectionalized optic disc image for input to the DL
model compared to the non-sectionalized image.

The predicted values strongly correlate with the ground truths, as shown in Figure 3
by the linear trend along a wide range of RNFL thicknesses in both regional and global
averages. Correlation between predicted and OCT measured RNFL confirms that the
suggested CNN architecture was trained as desired and properly working for RNFL
thickness estimation from the optic disc image. A summarized comparison between
averaged OCT measurement and trained CNN prediction on RNFL in the test dataset along
regions is given in Table 3.

Table 3. The mean and standard deviation of OCT measured and trained CNN prediction on RNFL
thickness (µm) in the test set along the global and regional sections.

Region Acronym OCT Measurement CNN Prediction

Global G 83.9 ± 16.1 85.0 ± 13.3

Superior temporal ST 106.0 ± 36.3 105.3 ± 24.7
Superior SS 107.0 ± 31.3 105.0 ± 26.9

Superior nasal SN 101.0 ± 25.7 87.8 ± 20.8
Nasal superior NS 78.7 ± 21.1 76.9 ± 16.9

Nasal NN 57.6 ± 12.7 61.2 ± 11.0
Nasal inferior NI 65.4 ± 16.7 71.3 ± 13.1
Inferior nasal IN 93.9 ± 24.4 91.7 ± 18.4

Inferior II 104.1 ± 38.2 101.4 ± 26.2
Inferior temporal IT 87.2 ± 41.2 88.3 ± 22.5
Temporal inferior TI 64.2 ± 16.8 71.8 ± 11.6

Temporal TT 61.6 ± 13.4 70.2 ± 11.4
Temporal superior TS 79.9 ± 22.2 79.7 ± 15.4

In Figure 4, representative examples of prediction from the test set are shown for
various RNFL thinning progression. Figure 4a shows an example with true and predicted
RNFL thinning level for each sub-region. Examples in Figure 4b are all regions in normal:
Figure 4c globally normal but with partially damaged RNFL, and Figure 4d for severe cases
in which progression of RNFL thinning is acute.

In the example, the prediction of the RNFL thinning level is not always correct since
there is an error in the prediction of RNFL thickness. However, the inference capability of
the regional RNFL thinning levels from a fundus photograph could be useful for screening
glaucoma when OCT measurement is not available. It is also helpful to distinguish the
condition briefly among different levels of progression in RNFL defects.
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(a) Representation format. The inner color label indicates the true thinning level from OCT mea-
surement and the outer color label is the predicted level from CNN estimation. (b) All normal,
(c) partially damaged, and (d) severe cases. Data is based on the test set.

3.2. Regional RNFL Thinning and Glaucoma Screening

We applied our prediction protocol to three groups to reveal different RNFL thin-
ning levels among distinct patient groups. In Figure 5, prediction results are shown for
30 randomly selected cases for each of the following groups of patients: (a) glaucoma (NTG),
(b) suspicious, and (c) normal patients. The colored grid represents the prediction of the
RNFL thinning level using trained CNN for the global and 12 regional parts. The scatters
indicate predicted RNFL values with corresponding colors of thinning level. From the
results, we have confirmed that the categorization of RNFL thinning level based exclusively
on the global can often lead to false negative outcomes.
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Figure 5. Prediction and categorization of RNFL for different patient groups; (a) glaucoma
(N = 61, 210 cases), (b) suspicious (N = 93, 103 cases), and (c) healthy (N = 124, 167 cases) pa-
tients. The colored tiles showing the categorization of RNFL thinning level from a randomly selected
30 eyes and scatters on the right side represent all estimated RNFL values in (µm) with categorized
color. Each row indicates regions from the global (G) and 12 regional subsections (from ST to TS).

Shown in Figure 5a,b, are the categorization results of averaged RNFL from many glau-
comatous eyes and most suspicious eyes in the normal range. However, a clear distinction
is disclosed in the categorized regional RNFL thinning level. Notably, directional thinning
of RNFL at the superior and inferior region is clearly shown from glaucomatous eyes. More
specifically, directional thinning is predicted in suspicious patients from superior-temporal
(ST), inferior (II), and inferior-temporal (IT) regions. Regional thinning of RNFL around
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the optic disc was previously reported, significantly thinning of the superior and inferior
region strongly correlated in the early stage of glaucoma progression, and much quicker
to become thinner than other regions [47–49]. Our results from estimated RNFL thickness
from fundus photograph using trained CNN showed a similar tendency compared to
previous findings. Therefore, prediction of RNFL thinning level along 12 regions from optic
disc image with trained CNN could be useful for screening glaucomatous patients with
OCT-based RNFL measurements. A summary of estimated RNFL from three groups as the
average and the standard deviation for the global and 12 regions is given in Table 4.

Table 4. Summary of estimated RNFL (µm) from glaucoma, suspicious, and normal groups for global
and 12 regions.

G ST SS SN NS NN NI IN II IT TI TT TS

Glaucoma
85.0 105.2 104.9 87.7 76.9 61.2 71.2 91.7 101.3 88.2 71.8 70.1 79.7
±13.3 ±24.8 ±27.0 ±20.8 ±16.9 ±10.9 ±13.2 ±18.4 ±26.2 ±22.5 ±11.6 ±11.4 ±15.4

Suspicious 86.5 100.8 108.7 94.8 83.9 70.6 80.7 94.8 107.7 90.4 72.2 71.5 78.5
±10.2 ±20.3 ±17.1 ±15.5 ±13.5 ±10.6 ±12.7 ±15.6 ±19.9 ±18.1 ±8.4 ±8.2 ±9.9

Normal
104.1 133.2 128.2 114.8 99.4 78.7 90.1 115.5 133.6 124.9 81.8 80.2 91.5
±7.5 ±17.8 ±16.8 ±15.9 ±15.4 ±12.4 ±14.5 ±14.8 ±17.2 ±16.8 ±8.7 ±8.3 ±11.2

In Figure 6, the results of the performed screening test are represented. For the test,
we composed the screening test set with 313 glaucoma cases (NTG and suspicious cases)
and 313 normal cases as described in Figure 2b. The screening rule for distinguishing
glaucomatous eyes simply checks the predicted categorization of averaged and regional
RNFL thickness. A given eye was judged as glaucomatous by the following criteria:
(1) based on global RNFL alone, a given eye is glaucomatous if the thinning level is
abnormal or borderline, (2) based on regional RNFL, a given eye is glaucomatous if one of
the thinning levels is abnormal or borderline and is located in superior or inferior regions
(i.e., ST, SS, SN, IN, II, and IT). The results are confusion matrices as shown in Figure 6(a1,a2).
Screening results based on global RNFL thickness showed 14.4% for sensitivity and 100%
for specificity. Screening with regional information results showed 92% for sensitivity
and 86.9% for specificity. Comparison between two confusion matrices clearly shows that
screening based on the regional performs much better.

We further investigated which subregion is crucial for screening performance in terms
of sensitivity and specificity. We performed the screening test using combinations of two
regional subsections among 12 regions. The criteria for judging a glaucomatous eye are
the same as previously. If one thinning level is abnormal or borderline, we judge a given
eye as glaucoma. Figure 5b shows sensitivity and specificity for screening results from all
possible combinations. The results show that screening sensitivity is relatively higher if the
superior or inferior region is included. Thus, for the glaucoma patient screening, at least in
the case of the normal tension glaucoma, observation of RNFL defect in the superior and
inferior regions could be critical for correct diagnosis. Furthermore, when inferior-temporal
(IT) subregion is included, the sensitivity of screening becomes higher than 75% while
other combinations become lower than 75%. Interestingly, if these regions are included, the
specificity becomes lower than 76%, which is worse than that of other combinations. This
is because of the relatively wider distribution of RNFL thickness in these regions.

In addition, we performed an ROC analysis based on predicted global and regional
RNFL thicknesses. For global RNFL thicknesses, sensitivities were 34.5% and 71.2% for
specificities at 95% and 80%, respectively, as shown in Figure 7a. These values are lower than
those reported in Ref. [33] (76% and 90%, respectively). We attribute this poor performance
to the fact that our data was based on the normal tension glaucoma (NTG) patients. We
suspect that our data distribution relative to that of Ref. [33] is closer to normal cases with
thicker RNFL. For example, the mean of global RNFL thickness values from NTG patients
is 84.3 µm whereas the mean of global RNFL thickness from glaucoma patients in the
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dataset of previous study is 68.8 µm. NTG patients show less thinning of the RNFL relative
to other types of glaucoma and thus we saw thicker global value.
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Figure 7. ROC analysis using (a) global RNFL predictions and (b) local mean of predicted RNFL
thicknesses over superior plus inferior (ST, SS, SN, IN, II, IT) regions, which has the best score of
AUC and sensitivity for specificity at 80%.

Furthermore, we performed ROC analysis with predictions of RNFL thickness from
12 regions and localized mean RNFL thicknesses over superior (S), nasal (N), inferior (I),
temporal (T), superior plus inferior (S + I), and nasal plus temporal (N + T) regions to
confirm diagnostically meaningful regions. Each local mean RNFL thickness was averaged
over corresponding sections, for example, RNFL thicknesses from ST, SS, and SN sections
were averaged for the local mean of the superior (S) region. Among 12 subsections, the
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top two highest sensitivity for specificity at 80% were confirmed as 88.2% and 70.6% from
the inferior-temporal (IT) and the superior-nasal (SN) regions, respectively. The best score
is given by using localized mean RNFL over S + I regions with 0.913 of AUC and 90.7%
sensitivity for specificity at 80%. Sensitivity of 90.7% is higher than that based on global
RNFL and comparable to the previously reported values. For a fair comparison with the
screening result (Figure 6(a2)), we also report sensitivities for specificity at 86.9%. In Table 5,
full results of the ROC analysis are summarized.

Table 5. Summary of ROC analysis based on section-wise predicted RNFL thicknesses and localized
mean over superior (S), nasal (N) inferior (I), temporal (T), superior plus inferior (S + I), and nasal
plus temporal (N + T). * Refer to the highest sensitivity and ** to the second highest sensitivity for
specificity at 80% among 12 subsections. † Refer to the best scored overall results.

Section Area Under
Curve

Sensitivity for
Specificity at

95%

Sensitivity for
Specificity at

80%

Sensitivity for
Specificity at

86.9%

Threshold
RNFL for

Specificity at
95%

Threshold
RNFL for

Specificity at
80%

Threshold
RNFL for

Specificity at
86.9%

Global 0.861 34.5% 71.3 60.7 105.57 96.73 99.41

ST 0.779 17.6% 53.7% 41.2% 144.11 123.65 130.56
SS 0.765 8.6% 56.2% 37.1% 149.43 121.19 131.83

SN ** 0.835 24.0% 70.6% 50.5% 125.85 105.22 112.96
NS 0.816 24.6% 62.9% 48.6% 108.95 92.12 97.58
NN 0.807 18.2% 63.3% 43.1% 87.23 72.65 77.27
NI 0.815 23.3% 66.1% 50.5% 100.66 84.20 89.56
IN 0.826 30.4% 70.0% 59.4% 122.32 106.19 110.97
II 0.830 19.8% 61.0% 40.3% 144.03 125.10 133.11

IT * 0.848 21.1% 88.2% 60.4% 129.52 101.24 112.08
TI 0.725 16.3% 49.2% 35.5% 89.20 79.97 83.57
TT 0.713 16.3% 43.8% 34.2% 86.08 79.60 81.77
TS 0.731 10.9% 49.2% 31.0% 103.68 88.41 93.26

S 0.862 29.7% 77.0% 60.7% 128.93 113.14 118.34
N 0.854 33.6% 73.5% 56.6% 92.94 81.79 86.37
I 0.899 36.4% 85.6% 71.9% 124.22 108.37 113.79
T 0.765 18.9% 54.3% 43.8% 89.59 81.23 83.60

S + I † 0.913 47.6% 90.7% 80.5% 122.07 108.73 113.02
N + T 0.868 32.6% 76.7% 60.7% 88.86 80.00 83.04

4. Discussion

We have demonstrated the DL model-based screening protocol by inferring RNFL in-
formation from color fundus photographs. The CNN models are trained on data from two
different ophthalmic imaging modalities: color fundus photography and OCT. Experimen-
tal results show that a color fundus photograph can delineate quantitative morphological
changes in the retina in terms of RNFL thickness with the DL technique. These integrations
of the core OCT advantages and relatively simple imaging device fundus photography
by DL technique would provide low-cost, easy, and simple assessment and quantitative
analysis for glaucoma screening and diagnosis. Moreover, intuitive screening informa-
tion enables the classification of the normal and diseased groups with examination of the
regional RNFL defect around the optic disc, which could be utilized as a new screening
protocol in real world testing.

For precise diagnosis of glaucoma, periodic observation on RNFL thinning is required
because of a wide spectrum of thickness observed in normal patients [50]. Thus, it may be
necessary to observe every 6 months for follow-up medical examination. However, it is
very hard to perform such in-depth medical checkups in developing or underdeveloped
countries with limited access to modern imaging systems such as OCT. On the other hand,
qualitative examinations based on fundus photographs are limited in detecting early stage
of progressive optic neuropathy due to the extensive training required.

Recent studies suggested utilizing the DL technique that can provide effective and
inexpensive glaucoma screening to a population in a limited medical environment. In these
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studies, they developed DL algorithms to predict global RNFL [33] or Bruch membrane
opening-minimum rim width (BMO-MRW) [34] from an image of the whole optic-disc
photograph. They showed predicted that quantitative structural deformation correlated
with visual loss and screening capabilities based on ROC analysis. In Ref. [34], regional
BMO-MRW along six different sectors was also investigated. Compared to previous studies,
the proposed approach has in common that quantitative retinal neuropathy is predicted
by DL technique from optic disc photographs. However, detailed localization has made
for precise estimation with pairing between compartmentalized optic disc images and
corresponding regional RNFL thicknesses. Screening capabilities were checked along each
section and reginal combinations based on ROC analysis. From the result we have found
that localized mean of RNFL thickness over superior plus inferior regions showed the best
screening performance. Though ROC analysis was performed based on predicted RNFL,
results demonstrate that the global RNFL thickness alone may be inadequate for accurate
screening of the NTG and early-stage glaucoma patients. Results support our hypothesis
that image analysis based on regional segmentation improves the outcome drastically.

The proposed simple and intuitive screening protocol showed highly sensitive per-
formance in a single shot examination with the capability of localized RNFL estimation.
The criteria of our screening protocol based on thinning level predictions could be useful
to tell whether the patient’s eye is glaucomatous or normal. However, the thinning level
is not sufficient to reveal how much of the RNFL defect has progressed quantitatively. In
contrast, the quantitative prediction of RNFL thickness directly confirms how much retinal
deformation is progressed. In a previous study, the potential of DL for predicting a pro-
gression of glaucomatous RNFL defects was investigated based on the averaged level [50].
The prediction of averaged RNFL is useful to confirm the trend of progression. However,
regional-based RNFL thickness prediction can provide more detailed information. Thus,
the periodic observation for checking progressive glaucoma without an OCT imaging can
be an effective screening technique if localized retinal deformation can be trackable from
fundus photographs.

Our approach can significantly extend the limits of the qualitative and subjective in-
formation based solely on fundus photographs, but still needs further improvement before
its adoption in clinical practice. We believe the accuracy of RNFL thickness prediction
can be improved further if additional data is used for the training model. However, even
if trained CNN can predict quantitative retinal deformation precisely, the gap between
OCT-measurement and CNN based estimation critically depends on the imaging quality of
the fundus photograph. In Figure 8, examples of prediction failures are represented. If the
fundus photograph is not clear with blurriness, low contrast, and not enough brightness,
the prediction of RNFL thickness becomes inaccurate and thus the thinning label is con-
sequently unreliable. Thus, a clear fundus photo is an essential prerequisite for accurate
prediction. In addition, the screening capability of the proposed technique would be further
enhanced when the DL model includes other risk factors such as intraocular pressure,
history of diabetes, hypertension and high myopia. The current approach may also include
additional quantitative values such as the rim thinning, notching, and cup-to-disc ratio for
the better credibility of glaucoma screening [33,34,51].

As glaucoma is known to be age-related, the global incidence is expected to rise
due to the aging population. In particular, the prevalence of glaucoma is very severe
in many developing countries because a large proportion of cases remain undiagnosed
or sub-optimally managed due to a lack of diagnostic and screening tools. Thus, the
availability of low-cost imaging devices for quick and easy screening would tremendously
benefit glaucoma care in low-resource settings. For our future work, a fully developed
CNN model would be tested with a low-cost, handheld fundus device integrated in an
ophthalmoscope [9,10,52]. Our technique based on fundus photography and DL may
be further extended to detect other retinal conditions, such as diabetic retinopathy and
age-related macular degeneration while enabling accurate diagnosis even in low-resource
settings.
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5. Conclusions

We present a deep learning approach to exploit the advantages of color fundus pho-
tography for glaucoma screening. A fundus photograph is augmented with estimated
RNFL thickness based on OCT data, unveiling morphological changes in the retina that
cannot be obtained using color fundus photography alone. Our approach for detecting
glaucoma using data from NTG patients gives a comprehensive and informative outcome,
and potentially delivers a screening capability over existing methods.
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